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Abstract. An interacting network of eight binary cellular elements is used to model some 
of the general features of immune response in an immune weakness disease. Both humoral 
as well as cell mediated responses are considered. Two logical intercell interactions are 
examined. With infinite-range interactions both models lead to 24 fixed points (stable 
configurations) with various degrees of immunocompetence and immunodeficiency. A 
simple cubic lattice is used with a cellular automata to take into account a nearest-neighbour 
intracell interaction. The evolution of cellular populations is studied for a random binary 
mixture of these two interactions with probability f and a crossover is observed from an 
immunodeficient state for f below a characteristic value fc(=0.8) to an immunocompetent 
state above it. 

1. Introduction 

Studying the problems in immune response by theoretical methods has attracted a lot 
of interest in recent years (Perelson 1988, Kaufman et a1 1985, Kaufman 1988, 1989, 
Weisbuch and Atlan 1988, Weisbuch 1989, Atlan 1989, Cohen and Atlan 1989, Dayan 
et a1 1988, Pandey and Stauffer 1989, Pandey 1989a, b, Neumann 1989, Chowdhury 
1989, Cooper 1986, Parisi 1988, Kurten 1988, Behn and van Hemmen 1989). Immune 
systems consist of a huge number of cells (=lo9)  and molecules (*lo'*) which are 
subject to continuous decay and renewal (Jerne 1973, Lawrence 1985, Sci. Am. 1988). 
Most of the cellular participants possess different specificity and perform specific 
functions in a random but coordinated fashion (Roitt 1988). There is a growing list 
of varieties of immune responses and reaction mechanisms. A complete understanding, 
from triggering the reaction to shutting down the response, is one of the most difficult 
issues. 

Numerous attempts have been recently made to model a variety of immune 
responses and some progress has been made in describing some of diversity observed 
in immune systems (Perelson 1988). A simplified discrete method has been frequently 
used in recent years to model some of the immune responses such as autoimmunity 
(Weisbuch and Atlan 1988, Cohen and Atlan 1989), acquired immune defficiency 
syndrom (AIDS)  (Pandey 1989a, b). We develop it further to explore some general 
features of the immune response in an infection caused by human immunodeficiency 
virus ( H I V ) .  In this approach, a cellular state is described by a binary variable, 0 and 
1 representing the low and the high concentrations of the cells which interact with 
each other with logical interactions. We have already studied some of the general 
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features of the immune response using an interacting network of three cells (Pandey 
and Stauffer 1989, Pandey 1989a). A system of four cells (Pandey 1989b) where only 
a part of the cell mediated the response, was examined without considering the effects 
of shutting down the reactions. For the first time, we use here an eight-cell interacting- 
network model to study the response from the beginning to the end with both cell- 
mediated as well as humoral responses. 

In section 2 we briefly describe the main cellular elements involved and their 
pathways in immune response along with the unique feature of HIV in 
AIDS. Models and results for the infinite range and nearest-neighbour interacting 
networks will be presented in sections 3 and 4, respectively. Results are summarised 
in section 5. 

2. Cellular participants, reaction pathways and HIV growth 

Introduction of a foreign element, say a virus, triggers the immune system to a response 
in which a variety of cellular elements begin to multiply and decay. T4 cells, T8 cells, 
B cells and macrophages are some of the primary cellular elements (Jerne 1973, 
Lawrence 1985, Sci. Am. 1988) that participate in a coordinated fashion with the help 
of a variety of mediators such as lymphokines (IL1, IL2 interleukines for example), 
cell growth factors and effectors; these cells possess different specificities which enable 
them to perform their specific functions. In general, the antigen presenting cells (such 
as macrophages) engulf the virus and present its antigenic component in a specific 
form to the T4 cells receptors as they cannot recognise antigens otherwise. Once the 
T4 cells recognise such expressed antigens along with MHC 11 they begin to multiply 
and produce chemical signals such as lymphokines (Roitt 1988, Sci. Am. 1988) which 
regulate the populations of B cells and T8 cells. On receiving the chemical signals 
both B cells and T8 cells start proliferating and differentiating in order to perform 
different types of cytotoxic functions leading to what is known as ‘humoral’ and ‘cell 
mediated’ response, respectively. T8 cells differentiate into cytotoxic (killer) and 
suppressor cells while B cells proliferate into plasma cells and memory cells; the mature 
cells are then released into the blood stream. On encounter with antigens expressed 
in a specific form (by the antigen presenting cells) along with MHC I markers, the 
cytotoxic T, cells kill them in a cell-mediated response, while suppressor T, cells, in 
order to shut down the response, prevent T4 cells from releasing lymphokines. On the 
other hand, in a humoral response, the antibodies secreted by the plasma cells bind 
to free antigen and neutralise them; the memory cells guard against the same invader 
(i.e. virus) in a future encounter. Figure 1 illustrates the main features of this general 
mechanism. We should point out that in our simplified model all specific functions 
of these and other cell types and cell mediators are not considered explicitly. 

The human immunodeficiency viruses in AIDS have high tropism for T4 cells which 
play the key role in delegating the immune response. Thus, by depleting the population 
of T4 cells that regulate the populations of T8 cells and B cells, the HIVS weaken both 
the cell-mediated as well as humoral defence mechanism. T4 cells carry CD4 protein 
molecules, which are good receptors for the virions (Sci. Am. 1988) as they carry gp120 
protein molecules on their surface; the conformational complementarity of the CD4 
and gp120 molecules enhances their interactions and fusion. In fact the H I V  can interact 
and bind together with all cells carrying CD4 molecules on their surface in which T4 
cells are badly damaged; thus they share a large part of the infection. Some of 
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Figure 1. A sketch of immune response. Arrows indicate the pathways and + and - signs 
shows the stimulatory and inhibitory functions; details are described in the text. 

macrophages also carry CD4, and an H I V  can bind without destroying them; the 
macrophages thus serve as a reservoir for H I V  transport. We attempt to take into 
account these general features of cellular interactions including tropism of HIV for T4 
cells to study the population growth in section 3. 

HIV behave like retroviruses which seem to reverse the normal flow of genetic 
information. The genes of a retrovirus are encoded in RNA which must be converted 
into DNA, after which the viral genes, as in usual sequence, are transcribed into 
messenger RNA and translated into proteins. When an H I V  particle binds to a cell, it 
injects its core, which consists of two strands of RNA as well as proteins and enzymes 
that carry out later steps in the life cycle. One enzyme helps to convert the viral genetic 
information into DNA polymerase which makes a single-strand DNA copy of the viral 
RNA; the original RNA is destroyed by ribonuclease, and polymerase makes a second 
DNA copy using the first one as a template. This double-strand DNA migrates to the 
cell nucleus where, with the help of integrase, it is integrated into the cell’s own DNA. 

Such viral DNA, known as the provirus, remains latent, giving no sign of its presence 
and is duplicated together with the cell’s own genes every time when the cell divides. 

In an alternate mechanism of the viral growth, the production of new virus particles 
takes place sporadically and only in some infected cells. The nucleotide sequences in 
the long terminal repeats (LTR) direct enzymes of the host cells to copy the DNA of 
the integrated virus into RNA. Some RNA provide the genetic material for a new 
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generation of virus while other R N A  strands serve as m F ”  to guide the cellular 
mechanism in producing structural (viral) proteins on ribosomes. The proteins and 
additional RNA then aggregate to form new virions that bud from the cell. This process 
may take place slowly, sparing the host cell or so rapidly that the cell is lysed, leading 
to a burst of virions. In section 4, attempts will be made to incorporate this dubious 
nature of HIVS and their erratic growth along with the general features described above. 

3. Infinite-range interacting network 

In the framework of the simplified picture outlined above for an immune response, it 
appears that, to describe the response from beginning to end, we need to consider 
eight cellular elements: free antigen ( Cl), antigen expressed in a specific form (CJ, 
antigen presenting cells like macrophages (C3), T, cells (C4), cell mediators like 
lymphokines ( C,), cytotoxic T8 cells (c6),  suppressor T8 cells (c,) and antibodies 
secreted by B cells (c8); memory cells are ignored at present. This is the first time we 
have considered such a large number of cellular elements for studying the complete 
response, in our previous studies fewer cells were considered where modelling was 
restricted to the initial stage of only the cell-mediated response. As we mentioned 
before, in our simplified analysis we resort to the discrete methods in which the cellular 
states will be represented by binary variables and the interactions by logical expressions 
(Kaufman et al 1985). 

In immune response, cells interact with each other by several mechanism such as 
direct contact among the cellular elements, by secreting the soluble molecules and 
releasing the chemical signals and via specific pattern recognitions (epitop-paratop 
network) etc. It is rather difficult to take into account all the complex mechanisms 
that lead to interactions among the hvge arrays of cellular elements with diverse 
specificities. However, some of the overall effects can be incorporated in simplified 
forms and in the following we consider a set of Boolean expressions to describe 
interaction (1): 

C , ( t + l ) = ( C , ( t )  or C,(t))  and (not C,(t))  

C2( r+1)=(Cl ( r )  and C3(t)) and (not C6(t)) 

C3( t + 1) = C3( t )  or C,( t )  

C,(t+l)=(C,(t)  or C,( t ) )  and (not Cl(?))  

C, ( t+ l )=(C , ( t )  or C4(t) )  and (not C,(t))  

C,( t + 1) = c6( t )  or C,( t )  

C,( t + 1) = C,( t )  or C,( t )  

C8(t+l )=Cs( t )  or C,(t)  

where Ck( t  + 1) is a binary state of cell type k(  = 1 ,2 ,  . . . , 8 )  at time step t + 1 emerging 
from interactions among cells at the previous time step t .  We assume that the viruses 
lead to two types of antigens (free C ,  and expressed C2 antigens). The first equation 
represents the growth of free antigens for which antibodies secreted by B cells must 
be absent and either a free antigen (for self-interaction) or a T4 cell (receptor for the 
virus) be present. We consider only macrophages as antigen presenting cells here. 



Cellular population in a multicell immune network 4325 

Thus for antigens to be presented in a specific form, the cytotoxic T8 cell must be 
absent and both the free antigen as well as the macrophage be simultaneously present, 
these macrophages then engulf the virus to display its antigenic material on their 
surface; this process is described by the second equation. In the third equation, the 
presence of a macrophage (self-interaction) or a free antigen (to trigger the reaction) 
leads to the activation of macrophages. In the absence of free antigens, T, cells 
proliferate if either a T4 cell or an antigen (displayed by macrophages) or both are 
present at the previous time step; this is described by the fourth equation. The 
lymphokines grow with the help of T4 cells and by self-interacting, but at a previous 
time step the suppressor T8 cells must be absent otherwise they will prevent lymphokine 
production, as expressed by the fifth equation. The remaining three equations represent 
the growth of cytotoxic and suppressor T8 cells and antibodies (from B cells) with the 
help of lymphokine signals in addition to their self-interactions at the previous time step. 

This pool of eight cells give rise to 256 configurations; if we start with one of these 
configurations randomly at t = 0, we obtain a flow of configurations emerging from 
the above interactian in successive time steps ( t  + 1). Such flows end up in a fixed 
point which describes a stable configuration. The set of interaction (1) gives rise to 
24 fixed points which are presented in table 1 with corresponding weights, i.e. with 
the fraction of the total configurations leading to that fixed point. Caution must be 
exercised in interpreting the weight factors in table 1, as not all the 256 possible 
configurations are relevant in immune response; these weights are presented in the 

Table 1. Representation of cellular state (C,, C2,  C3, C4, C,,  c 6 ,  C7, C8) .  

Interaction (1 ) Interaction (2) 

Fixed point Probability Fixed point Probability 

1 I 

I 1 

1 1 

1 1 

1 

I 1 

I 

- 0 = (00000000) 256 0 = (00000000) 256 
- 

1 = (00000001) 256 1 = (00000001) w - 
- 2 = (00000010) 233 2 = (00000010) 256 

3 = (00000011) 256 3 = (0000001 1 ) 256 

4 = (00000 100) 256 4= (00000100) 256 

5 = (00000101) m 5 = (00000101) 256 

6 = (000001 10) 256 6 = (000001 10) 256 

7 = (000001 1 1) m 7 = (000001 1 1) 256 

19 = (00001011) & 32 = (00100000) 256 

23 =(00010111) 256 33 = (00100001) 256 

32 = (00100000) 256 34 = (00100010) 256 

33 = (00100001) & 35 = (00100011) 256 

34= (00100010) 256 36 = (00100100) 256 

- - 
- - 
- 

- - 
9 - 9 

I 

I 

1 1 

1 

1 

- 
- 25 - 
- - 
- 

- - 
35=(00100011) & 37 = (00100101) Tk 

38 = (00100110) - 

- 36 = (00100100) 256 38 = (00100110) 256 

37= (00100101) 256 39=(00100111) 256 

224 = (1 1100000) 256 

225=(11100001) 256 
7 14 

51=(00110011) m 226 = (1 1100010) 256 
14 55 = (001 101 11) 256 227=(11100011) 256 

37 

4 4 

4 14 

14 

(I5 226=(11100010) &% 231 =(11100111) 256 

- 
5 90 
1 - 4 

- 

4 - 39 = (00100111) $ 
- 
- - 

164=(10100100) 256 228=(11100100) w 
166 = (101001 10) 256 229=(11100101) 23% 

- 
- 

224 = (1 1100000) 5% 230= (11100110) 
- 
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table in case the reader want to check the result. Configuration 39 = (00100111) = 
(C, , C, , C, , C,, C 5 ,  C,, C, , C,) represents a state in which only macrophages are 
present along with cytotoxic and suppressor T8 cells. We define the ‘immunodeficient’ 
and the ‘immunocompetent’ states by the presence and absence, respectively, of the 
antigens. Note that the production of T4 cells and lymphokines is suppressed and 
therefore this fixed point describes the completion of response in an immunocompetent 
state. Configuration 55  = (001101 11) also represents an immunocompetent state in 
which macrophages, T4 cells, T8 cells and B cells (the antibodies) are present, all other 
cells are absent. The last four fixed points 164= (10100100), 166 = (10100110), 224= 
(1 110000) and 226 = (1 1100010) lead to immunodeficient states in which free antigens, 
expressed antigens, and macrophages (a  shelter for the virus) are present. 

In order to enhance the viral proliferation, we consider the following set of 
interactions: 

C , ( t+ l )  = ( C , ( t )  or C,(t))  and [not (C , ( t )  and C, ( t ) ) ]  
(2) 

C,(t+l)  = (C, ( t )  and C,( t ) )  and [not (C,( t )  and C,( t ) ) ]  

for free and expressed antigens, keeping all other interactions the same as those in the 
set of interactions (1) for the remaining cell types. Note that now, unless there is a 
sufficient amount of lymphokine signals, T, cells and B cells (via antibodies) are unable 
to perform their cytotoxic (viral killing) functions (Roitt 1988); as a result, both free 
antigens and those displayed in specific form may grow with larger probability. This 
second set of interactions also leads to 24 fixed points. However, some of these fixed 
points are different than those with interaction (1) (see table 1). Fixed points 19= 
(00010011), 23 = (00010111), 51 = (00110011) and 55 = (00110111) which help to 
achieve immunocompetence and 164= (10100100) and 166 = (10100110) that lead to 
immunodeficiency with interaction (1) (see table 1) are absent here. Instead, six new 
fixed points, 225=(11100001), 227=(11100011), 228=(11100100), 229=(11100101), 
230 = (1 1100110) and 231 = (11 1001 11) appear, all of which drive the whole immune 
system towards the immunodeficient state. 

4. Nearest-neighbour interacting network 

Cellular elements participating in immune response are inside the body where immune 
reactions take place in local regions such as thymus gland, bone marrow, blood vessels 
etc. The spatial host medium in which various mediators, growth factors, effectors etc 
are in stochastic motion and where these cells are interacting, dividing, decaying and 
growing should have some bearing in the analysis of immune response. In our previous 
analysis (section 3), the spatial distribution of cell types is completely ignored, i.e. no 
matter how far and in what fashion different cellular elements are distributed, each 
cell type at all positions behaves in the same way. This is an oversimplification. The 
fact is that these cellular elements possess finite size and that steric hindrances (due 
to host space and due to the presence of other cells) may influence their interactions 
(including conformal fitting) and growth. Furthermore, in a limited space cells may 
interact more effectively with their neighbouring cells in comparison to cells far away 
from them. Ideally, one should consider a host space similar to the participating 
medium and take into account all interactions (short- to long-range). However, to 
avoid the complexities we restrict ourselves in our exploratory study here to a simple 
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cubic lattice as a host medium and to the nearest-neighbour interactions as the extreme 
opposite case to the mean-field description presented in previous section. 

To study the effect of nearest-neighbour intracell interactions, we consider a simple 
cubic lattice of size L x L x L and use a multispin code (Herrmann 1986) to store each 
site per bit in a 64-bit word as we did in our previous studies (Pandey 1989b) on a 
Cray YMP machine. We place each cell of eight different types at each lattice site. 
Initially, a fraction p (  k) of lattice sites is occupied by k cell types in their binary state 
of high concentration (state l ) ,  while the rest, a fraction l-p(k),  are empty (in other 
words they are occupied by these cell types in their binary state of low concentration 
(state 0)). Now we use cellular automata rules for the N N  intracell interaction (Pandey 
and Stauffer 1989). A cell type k with a current binary state, say C,(t) ,  is selected at 
a site i. Then the binary states of cell type k at the neighbouring sites are added to 
Ck(t )  at site i. If this sum of seven binary states of cell type k is positive then a 
temporary binary state C,(t)' of high concentration (state 1) is assigned to this cell 
type k at site i. Otherwise its binary state remains at 0. Similar temporary binary states 
are assigned to all other cell types at site i and to each cell type at all lattice sites using 
a logical 'or' operation for the intersite intracell interactions. With their temporary 
binary states, all eight cells at a site i then interact with each other according to intercell 
interaction (1) or (2) to get a final binary state Ck( t + 1) at the next time step t + 1. 
This process is repeated again and again for all cell types at each lattice site with 
several independent runs for the time step in which the populations of all cell types 
reach their steady-state value. An attempt to update the binary state of a cell type at 
each lattice site is defined as one time step. 

It is worth pointing out that the lattice itself is not realistic in modelling the host 
space of the immune system. We know that various cell mediators, growth factors and 
effectors help in activating and stimulating the cellular elements. The level of reactivity 
is therefore enhanced during the course of immune response. We capture some of 
these effects by a N N  intracell interaction mechanism followed by intercell interaction. 
Moreover, the introduction of a lattice provides us a way of looking at the change in 
population (see below) rather than describing just the overall state, as in section 3. 

The next step in developing our model is to consider the unique features of HIV 

pointed out briefly in section 2 .  It is now well established that H I V  belong to retrovirus 
systems in which its reverse transcriptase function, inaccurate replication and genetic 
drift make it difficult to understand its growth pattern. However, there is no unique 
pathway in which viral growth takes place. As we mentioned before, in one pathway 
the genetic material of H I V  is integrated into cell nuclei where the provirus (the 
double-standard DNA) remains latent and multiplies only when such infected cells 
divide. On the other hand, in an alternate pathway, using the cell's genetic materials 
and manipulating their biochemical functions, these proviruses assemble virion parti- 
cles, resulting in a burst of viral particles. To take into account this erratic nature of 
HIV, i.e. their latent and sporadic growth, we consider a random binary mixture of 
interactions (1) and (2) with a mixing probability f (Pandey 1989b). In other words, 
we assume that these dormant viruses leads to intercell interaction (1 ) with probability 
f and to intercell interaction (2) with probability 1 -j Now we address the question 
of how the cell population depends upon J ;  how do these cellular elements evolve with 
time and how does the initial concentration host cells affect the population growth? 
The computer simulation is performed on a Cray YMP machine and a multispin code 
(Herrmann 1986) is used to produce data with a sample of size 64 x 64 x 64; another 
sample of size 192 x 192 x 192 is also used to see if there is any change in the qualitative 
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behaviour due to finite-size effects. The maximum speed is found to be about 100 
sites, i.e. 800 cells per microsecond per YMP processor. At the lowest initial concentra- 
tion of all cell types, p ( k )  = 0.000 005 where only one cell of each cell type is present 
at a site in its high-concentration state, we study the evolution of cellular elements. 
With interaction (1) (i.e. at f =  1.0) figure 2 ( a )  shows the growth and decay of ‘free 
antigens’, ‘expressed antigens’ and ‘T4 cells’. The population of both types of antigens 
(free and expressed) grows first at the initial stage and then decays down to a very 
small steady-state value. On the other hand, T4 cells multiply sharply to reach their 
steady-state population; before reaching a steady state the population growth does not 
show non-monotonic behaviour as in case of antigens. In the steady state, populations 
of these cellular elements oscillate with different amplitudes (see figure 2 ) .  This 
oscillation does not mean that there is no stable state, in fact the population of T4 
cells (even in its lower limit) dominates over that of viruses in their steady state and 
therefore it may be described as an immunocompetent state. To maintain clarity the 
growth of the remaining cells is not included in the figure. Populations of macrophages, 
cytotoxic and suppressor T8 cells and B cells grow smoothly to high values (comparable 
to the sample size and T4 cell population) in the steady state. The lymphokine 
population fluctuates during the initial stage of response before it finally decays down 
to zero; this feature is compatible within the framework of our model in which the 
action of suppressor cells is very effective in switching off the response by stopping 
the release of lymphokines. The population of T4 cells (along with other host cells 
(T8 cells, B cells and macrophages)) is much larger than that of antigens in the steady 
state at this extreme value o f f (  = 1.0). Since T4 cells play a key role in delegating the 
immune response, this steady-state behaviour describes an ‘immunocompetent’ state. 

On lowering the value off by a small about to 0.9, the evolution of growth pattern 
remains the same (see figure l (b ) ) .  However, the steady-state population of T4 cells 

Time 

Figure 2. Concentration of T, cells ( x ) ,  free antigens 
(+) and expressed antigens, i.e. antigens presented 
by macrophages (*I. Normalisation is with respect 
to population of T, cells in ( a )  and ( b )  and with 
respect to the population of free antigens in (c). The 
value of mixing probability f =  1.0 ( a ) ,  0.9 ( b )  and 
0.8 (c ) .  The concentrations are plotted against time. 
The lattice of size 6 4 ~ 6 4 x 6 4  is used with five 
independent runs with the initial concentration of 
each cell types p ( k )  = 0.000 005. 
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is reduced down to about half of its value at the extreme f (  = 1.0). On the other hand, 
the population of free antigens and that of the antigens presented by macrophages is 
increased by a very large amount in comparison to their corresponding f = 1 .O popula- 
tions (figure 2 ( b ) ) .  On decreasing the value off  further down to 0.8, the steady-state 
populations of both types of antigens far exceed the population of T4 cells (see figure 
2( c ) )  leading to an ‘immunodeficient’ state. A similar qualitative behaviour is also 
observed with a larger sample of size 192 x 192 x 192 (see figure 3). The steady-state 
population pattern remains unchanged for all cell types. However, the time to approach 
the steady-state population for each cell type increases on increasing the sample size. 
Note the different normalisations at different values off ;  they are the maximum value 
of the population of T4 cells in parts ( a )  and ( b )  at f = 1.0 and 0.9, respectively and 
that of the free antigens in part (c )  as the T4 are the most numerous among the cell 
types shown. We should point out that the qualitative behaviour such as the non- 
monotonic growth of antigens and the monotonic growth of T4 cells remain the same 
(see figures 2 and 3). 

Time 

I 

0 50 100 150 200 
Time 

Figure 3. Same as figure 2 on a larger sample 192 x 
192 x 192 with the initial concentration of each cell 
type p ( k )  =O.OOO 000 15 where there is only one 
infected site in the whole lattice as in case of the 
smaller lattice in figure 2. 

So far we are limited to the lowest initial concentration of the host cells in studying 
the population growth of cellular elements involved in immune response. A similar 
growth pattern also prevails for higher initial concentrations of the host cells 
(macrophages, T4 cells, T8 cells, B cells and lymphokines) keeping the initial viral (i.e. 
both antigens) concentration to its lowest level. The response time in which the 
populations of each cell type reach their steady-state value decreases on increasing 
the initial concentrations of the host cells. On decreasing the value o f f  from its 
extreme value (l.O), we observe a crossover from an immunocompetent state (at high 
values o f f )  to an immunodeficient state (at lower values o f f ) .  To characterise the 
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crossover here we define a ‘survival probability’ as (T, cells - free antigens) popula- 
tion/(maximum population of T, cells, i.e. the steady-state population at f= 1.0) in 
the steady-state configuration as a function off ;  the resulting plot is presented in figure 
4. The survival probability is a measure of immunocompetence, which increases above 
a certain characteristic value fc( -0.8) below which the viral population dominates over 
the host cell populations, leading to an immunodeficient state. The crossover behaviour 
remains unchanged for the larger sample. 

1001 ’ I 
I c 

ot , b / ‘ ,  , , I 

075  080 085 0 9 0  095 100 
F 

Figure 4. Survival probability defined as (T4 cells 
population (T4)-population of free antigen 
(V)/(maximum value of T4 cells population 
(T4MAX)) as a function off for the initial concentra- 
tion of host cells 0.005 with the initial concentration 
of virus (i.e. both free as well as expressed antigens) 
p ( i )  =0.000005. The lattice of size 6 4 ~ 6 4 x 6 4  is 
used with 50 independent runs. 

5. Summary 

In summary, we have presented an eight-cell interacting network model in order to 
study the population growth of cellular elements involved in an immune response 
where an attempt has been made to incorporate some of the general features of HIV 
infections. To our knowledge, for the first time we have explicitly taken into account 
some immune mediators like lymphokines, and both humoral as well as cell-mediated 
responses are considered. Two intercell interactions are examined. With the infinite- 
range interacting network, both interactions give rise to 24 fixed points (stable configur- 
ations), however, all fixed points with interaction (1) are not the same as those with 
interaction (2). Furthermore, different weights are associated with these stable configur- 
ations such that an immunocompetent state is more favourable with one interaction 
(1) and an immunodeficient state, with the other (interaction (2)). 

A simple cubic lattice is used to take into account the nearest-neighbour intracell 
interactions with the help of a cellular automata rule (of logical ‘or’ for the cellular 
state involved in the interaction). Evolution of cells is studied for a random binary 
mixture of interactions (1) and (2) with probability 5 At the extreme high value of 
f( = 1.0) where cells are interacting with intercell interaction ( l ) ,  we observe a viral 
growth followed by a viral decay (for both free as well as expressed antigens) while 
T4 cells multiply steadily to a saturation value; in the steady state, the T4 cell population 
is much larger than that of antigens, leading to an immunocompetent state. On lowering 
the value o f f ;  the steady-state population of T4 cells decays while that of antigens 
grows. Below a characteristic value off; (fc =L 0.8) the viral population dominates over 
that of the T4 cells leading to an immunodeficient state; in a narrow regime forf above 
fc we observe an immunocompetent state. The crossover from immunocompetent to 
immunodeficient state is described by a survival probability. Production of lym- 
phokines goes down to zero as a result of suppressor TB cells while all other cell types 
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grow in a normal fashion as a function of time for all initial concentrations of host 
cells. Many details, such as variety of other cell types (natural killer cells, white blood 
cells other than macrophages, etc), diverse specificities of the cellular elements, mobility 
of cells and a realistic host space are not considered explicitly. However, in our 
continued efforts towards understanding the immune response, the simplified model 
presented here does capture some of its main features. 
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